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FOREWORD

This report was prepared by IIT Research Institute for the Aero-
Acoustics Branch, Vehicle Dynamics Division, AF Flight Dynamics Laboratory,
Wright-Patterson Air Force Base, Ohio under Contract AF33(615)-3436. This
effort is part of the Air Force Systems Command's exploratory development
program. This contract was initiated under Project 4437 "High Intensity
Sound Environment Simulation", Task 443701 "Sonic Facility Development".
Messrs. B. Frock and C. L. Rupert of the Aero-Acoustics Branch were task
engineers.

The period covered in this contract is from January 1966 to
February 1967.

The project was under the direction of V. J. Raelson who left the
IIT Research Institute in October 1966. Mr. Raelson continued as a
consultant and wrote Sections 4 and 9. Sections 5, 6, 7, and 8 were
written by G. Hruska and edited by V. J. Raelson. Sections 1, 2, 3, 10,
11, and 12 were written and integrated into the report by H. B. Karplus.
IITRI Project No. is M-6141.

Manuscript was released by authors, May 1, 1967, for publication as
an AFFDL Technical Report

This technical report has been reviewed and is approved.

HOWARD A. MAGRA•
Chief, Vehicle D'namics Division
AF Flight Dynamics Laboratory
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ABSTRACT

Sound field characteristics were studied as a function of
increasing intensity. It was determined that one effect out-
weighs others. This is the distortion generated within the
siren which makes it impossible to generate pure tones above a
certain intensity. At high intensity the waveform of the sound
assumes a sawtooth shape producing periodic shock waves. Con-
versely, it is concluded that if the distortion is small at the
mouth of the siren, additional distortion in the subsequent
propagation will not be significant. Waveforms observed in the
AFFDL facility are included in an appendix.

Interaction of sound waves from different sirens will, in
addition, give rise to intermodulation effects producing sum and
difference frequencies. In general, the intensity in the region
in which the radiation from different sirens can interact will
be so much lower than the intensity in the throat of the siren
horn that these effects will also be small compared with harmonic
distortion generated in the sirens.

iii



TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1

2. PHYSICAL DESCRIPTION OF THE HIGH INTENSITY
EFFECTS 2

2.1 Distortion 2

2.2 Intermodulation 3

2.3 Basis for the Mathematical Formulation 6

2.4 Growth of Distortion in Plane Wave Propagation
of Initially Simple Harmonic Waves 14

2.5 Note on Noise 18

3. DISTORTION IN THE HORN 20

3.1 Moderate Amplitude--Low Frequency 20

3.2 Larger Amplitudes--Shock Waves 22

3.3 Utilization of Facility 24

3.3.1 Facility Modifications 24

3.3.2 Compensation for Nonlinear Effects 24

4. PROPAGATION OF SPHERICAL WAVES 25

4.1 Application of the Computations by Laird and
Ackerman to the Sonic Fatigue Facility 25

4.2 Application of Recent Russian Literature
to the Sonic Fatigue Facility 34

5. FINITE AMPLITUDE PLANE ACOUSTIC WAVES 38

6. SUPERPOSITION OF FINITE AMPLITUDE WAVES 40

7. NORMAL INCIDENCE REFLECTION FROM A HARD WALL
UNDER SPECIAL CONDITIONS (NORMAL INCIDENCE) 45

8. AUTOCORRELATION PROPERTIES OF A BAND OF FINITE

AMPLITUDE, PLANE WAVE, WHITE NOISE 47

9. EXPERIMENTAL INVESTIGATION 53

9.1 Review of Literature on Intense Broad Band Noise 53

9.2 Experimental Procedures 55

9.3 Comparison of Experimental Results with

Computations 70

iv



TABLE OF CONTENTS (Cont'd)

Section Page

10. ROOM TREATMENT 71

11. RECOMMENDATIONS 72

11.1 Facility Use 72

11.2 Measurements and Tests 72

11.3 Facility Modifications 73

11.3.1 Low Frequency Horns 73

11.3.2 High Frequency Horns 73

11.4 Further Theoretical Analysis 73

11.5 Experimental Studies 74

11.5.1 Distortion in Siren Horns 74

11.5.2 Other Nonlinear Effects 74

11.5.3 Noise 75

12. CONCLUSIONS 76

REFERENCES 77

APPENDIX A--MEASUREMENTS OF SOUND FIELDS IN THE
AFFDL FACILITY 79

APPENDIX B--HIGH INTENSITY TEST FACILITY AT
RIVERBANK ACOUSTICAL LABORATORIES 82

V



LIST OF ILLUSTRATIONS

Figure Page

2.1 Distortion Generated at Large Amplitudes. 4

2.2 The High Frequency Wave (b) Superimposed on the
Large Amplitude Low Frequency Wave Travels with
Periodically Varying Velocity Resulting in a
Frequency Modulation as at (c). 5

2.3 Growth of Harmonics and Attenuation of Plane
Waves Due to Finite Amplitude Effects. 17

3.1 Level of Second Harmonic (L2) Relative to the
Fundamental (L 1 ) as a Function of the Sound
Pressure Level (Lt) in the Throat of the Horn. 21

4.1 Growth of Second Harmonic in a Spherical Wave
of Finite Amplitude. 32

4.2 Growth of Second Harmonic in a Spherical Wave
of Finite Amplitude. 33

9.1 Level of Second and Third Harmonic Components
below the Level of the Fundamental as a Function
of Distance from the Speakers in the Horn
Coupling Section. (Band limited noise bandwidth
10 percent mean frequency 250 Hz at 157 db re
0.0002 Rbar near speakers.) 59

9.2 Spectrum of Sound of a 10 Percent Band of Noise
Analyzed with a 10 Hz Bandwidth Analyzer. 61

9.3 Analysis of Growth of Distortion of 10 Percent
Bandwidth Noise at 160 db Analyzed with 30 Hz
Filter. 62

9.4 Growth of Harmonics of a Plane Wave of Narrow
Band Noise in an Impedance Tube (Overall sound
pressure level in 10 percent bandwidth 160 db,
central frequency 300 Hz). 64

9.5 Growth of Harmonics of a Plane Wave of Narrow
Band Noise in an Impedance Tube (Overall sound
pressure level in 10 percent bandwidth 145 db,
central frequency 800 Hz). 65

9.6 Growth of Harmonics of a Plane Wave of Narrow
Band Noise in an Impedance Tube (Overall sound
pressure level in 10 percent bandwidth 145 db,
central frequency 1,000 Hz). 68

vi



LIST OF ILLUSTRATIONS (Cont'd)

Figure Page

A-I Sound Pressure-Time Function at I kHz at
Wright-Patterson Air Force Base Sound Facility
in Anechoic Mode. 81

B-I Low Frequency Impedance Tube. 83

vii



LIST OF TABLES

Table Page

2.1 Shock Formation Distance in Feet. 11

2.2 Sound Pressure Level at the Throat of the Horn. 12

2.3 Sound Pressure Levels at the Mouth of the Horn
above which Shock Waves Will Form in the Region
of Spherical Spreading. 13

3.1 Level of Harmonics in a Sawtooth Wave. 22

4.1 Normalizing Factor Versus Frequency. 29

4.2 Normalized Velocity Amplitude vs SPL. 30

9.1 Growth of Harmonics in 10 Percent Band Limited
Noise. 69

B-l List of Driving Equipment. 88

B-2 List of Measuring Equipment. 89

viii



SUMMARY OF MOST FREQUENTLY USED SYMBOLS

A = P/co 2

A VlWo02 (Wo2 + I)-1/2

b effective viscosity = v'

= exp (UI/2CwIA + U2 cos 6/2Cw2 A)

C = V'Co/2p2

Cp specific heat at constant pressure

C v specific heat at constant volume

c velocity of sound

co velocity of sound for small amplitudes = (yp o /po) 1 /2

erf( ) error function

f frequency

fc cut off frequency of exponential horn

IV( ) modified Bessel function

n( Bessel function of the first kind

k heat conductivity

L sound pressure level = 20 lOg 1 0 Prms + 74

m flare constant of exponential horn

p pressure

PO atmospheric pressure

PM peak acoustic pressure

Prms root mean square acoustic pressure measured in dynes cm
r r Prandtl number = qC p/k = 0.71 for air

Prp

R( ) autocorrelation function

S( ) power spectral density
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SUMMARY OF MOST FREQUENTLY USED SYMBOLS (Cont'd)

S t cross section at area of throat of horn

S cross section at area of mouth of hornm

r distance in spherical coordinates

t time

t' retarded time = t - x/c 0

U particle velocity

Um maximum particle velocity

v = U/c 0

x distance

x c shock formation distance of lossless plane waves

= YPoCo/•pm

w = 2vr/X = normalized distance

y = xC

a classical attenuation = v' 2 /co3

nonlinearity coefficient = (y+il)/2 = 1.2 (for air)

-Y = Cp/Cv

6 phase between waves

7 shear viscosity

*' 1 dilatational viscosity (2 0.8,9 for nitrogen)

V kinematic shear viscosity = r 1/p = 0.15 for air

I ' modified effective kinematic viscosity

= v[l + q/2TI' + (-l)/2P r] - 0.23 cm2 /sec for air

vI = 1)[4/3 + q/2TI' + (y-l)/2P]Unr

p density

C = x/x

X wavelength

x



PROPAGATION OF HIGH INTENSITY SOUND WAVES

1. INTRODUCTION

The Air Force Flight Dynamics Laboratory operates a large

facility for testing airplane structures in intense sound fields.

Very high intensity sound fields are produced by banks of sirens,

the level reaching up to about 170 db in the vicinity of the

mouth of the siren. The question arose whether this high inten-

sity modifies the low amplitude assumptions normally made when

computing sound pressure levels and whether the nonlinear effects

of the medium, that is, the air in the facility will introduce

effects not accounted for by the normal small amplitude theory.

A project was set up with lIT Research Institute under Contract

No. AF 33(615)-3436 to study possible effects due to nonlinear-

ities of the air in the facility as normally operated. Effort

was predominantly directed toward computation of the magnitude

of nonlinear effects from equations obtained from the literature.

In addition, where necessary, derivations were directed toward

establishment of possible effects not found in the open litera-

ture. A small program was also run on determining experimentally

the effects of high intensity broadband noise as measured in an

acoustic tube. These measurements were further augmented by a

few measurements made by the Air Force Flight Dynamics Laboratory

in their own facility with two of the sirens running. Waveforms

observed in the AFFDL facility are shown in Appendix A.
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2. PHYSICAL DESCRIPTION OF THE HIGH INTENSITY EFFECTS

For the small amplitude acoustic approximation of the

propagation of pressure disturbances through a fluid it is

assumed that the pressure fluctuation is small compared to the

ambient pressure and that the instantaneous particle velocity

is small compared with the propagation velocity of the disturb-

ance. These assumptions relate to the equation of propagation:

c2p = p (2.1)

The second derivative of the pressure with respect to distance,

p", is related to the second derivative with respect to time, p,

by the propagation velocity squared. The most predominant effect

for moderate finite amplitudes is the influence of the instan-

taneous particle velocity on the sound velocity. The sound velo-

city is no longer a constant but is the sum of the instantaneous

particle velocity and the local sound velocity. In addition,

the local sound velocity increases in the regions of high pres-

sure due to the adiabatic heating of the medium and decreases

due to the adiabatic cooling in the low pressure region. In

this manner the sound velocity, c, is no longer a constant, c0 ,

but is related to instantaneous particle velocity, U, by Eq.(2.2).

c = c0 + PU (2.2)

where f = ('y + 1)/2 and -y is the ratio of specific heat at

constant pressure to the specific heat at constant volume.

2.1 DISTORTION

The higher propagation velocity in regions of positive

pressures causes these regions to overtake the regions of low

pressures causing a distortion or change of waveform as the

pressure disturbances are propagated through the medium. If we

start with a pure sinusoidal pressure fluctuation, as shown in

2



Fig. 2.1(a), the overtaking of the high pressure regions will

cause a change in the waveform, as shown in Fig. 2.1(b). Solu-

tion of the simple plane wave propagation equation, Eq. (2.1),

with c not a constant leads to a rather physically impossible

situation, shown by the dotted line in Fig. 2.1(c), where mathe-

matically a double valued pressure exists when the positive

pressure displacement has overtaken the negative pressure dis-

placement. This difficulty arises only when no loss mechanism

exists in the medium. However, in spherical spreading or in the

tapered section of the horn, this difficulty is not important

because the drop of intensity with propagation eliminates this

difficulty. However, in plane wave propagation if there is no

loss mechanism as postulated, the mathematical solution is a

physical impossibility and a loss mechanism must be introduced

to the equations. Ultimately the waveform assumes the shape

shown by the solid line in Fig. 2.1(c), in which a shock wave

forms, indicated by the vertical lines in a pressure-space or

pressure-time diagram. In summary then, the sinusoidal disturb-

ance of pressure propagating with large amplitude eventually

changes its shape to a sawtooth form as shown by the solid line

in Fig. 2.1(c) and remains fairly stable in this form, decaying

due to the essential loss mechanisms in the medium.

2.2 INTERMODULATION

There is an additional effect on propagation when sound

waves of two different frequencies (fl and f 2 ) interact in a

region where the medium is not linear and where amplitudes are

sufficiently large that nonlinear effects must be taken into

account. The high frequencies, fl, move at a higher velocity

when superimposed with a pressure peak of the low frequency, f2 .

than when superimposed on a pressure trough of the low frequency.

This causes a frequency modulation of the high frequency sound

wave as shown in Fig. 2.2. Frequency modulation, of course,

3



Fig. 2.1. Distortion Generated at Large Amplitudes.
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(b)

(c)

Fig. 2.2. The High Frequency Wave (b) Superimposed on the Large
Amplitude Low Frequency Wave Travels with Periodically
Varying Velocity Resulting in a Frequency Modulation
as at (c).
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can be written in terms of mean frequency, fl, with side bands

spaced around this mean frequency at intervals of the modulating

low frequency f, ± nf 2 . This effect occurs only at points out-

side the siren in the room itself. The most significant region

will be the region of spherical spreading. However, for simpli-

city a plane wave interaction series has been developed. This

interaction occurs at considerably lower intensity than the dis-

tortion producing intensity in the throat of the horn. For this

reason this effect is considerably less than the distortion

effect described above.

2.3 BASIS FOR THE MATHEMATICAL FORMULATION

Sound propagation is, for convenience, subdivided into

three distinct regions:

1. Exponential spreading inside the horn. This

region of propagation is treated in Section 3.

2. Spherical spreading at considerable distances

from the sources. The wave front will be a

reasonably good approximation to a sphere at

distances greater than about a2/A, where a2

is the area of the horn mouth and X is the wave-

length. This region is discussed in more

detail in Section 4.

3. There is a short intermediate region immediately

outside the sirens where the wave propagates

essentially as a plane wave. This region is

discussed in Section 5.

Interactions of waves of different frequencies are dis-

cussed in Section 6 and effects of reflection in Section 7. The

effects of finite bandwidth are discussed in Section 8 and some

experimental results on these are given in Section 9. This is

followed by a brief discussion of the effects of the wall treat-

ment in the room in Section 10. Recommendations and conclusions

are given in Sections 11 and 12.

6



To compute the local sound velocity c in terms of the

small amplitude sound velocity co and the particle velocity U

or instantaneous acoustic pressure p, and ambient pressure po:

Co = yPolPo , (2.3)

cI (-Pllpl) 1 / 2 + U

Hence

el = P l PO -1 / + __

co Pl o C

Substituting the adiabatic relation

pl l - pop o-0

cI pl(-y- 1) /2-y UI
_ =)_y+2 . (2.4)

Co PO co

If the pressure amplitude is still sufficiently small that

the binomial expansion may be limited to the first term

Pl(y-I)/2y Pl " Po + ("y-)/2y
1_ = 1 + 1

PO POI

1+ 1 P, - (2.5)

2y PO

Now the excess pressure, p = P l -po, is related to the

particle velocity U1 by the medium impedance pcO.

UlPc = p ,(2.6)

or

P yUlC° 2 YUI (2.7)
- - TUl o~ / Po = 2 =- -

PO Co Co

7



Substituting Eq. (2.7) in Eq. (2.5) and this in Eq. (2.4) gives

c = c0 + OU (2.8)

where ý = (y + 1)/2.

This is the nonlinear effect valid for moderate sound

pressures (pl-Po <<po) with which all treatments of nonlinear

acoustics start.

We further compute the conditions necessary for the form-
ation of shock waves, Fig. 2.1(c). To treat three separate

regions (plane waves, spherical waves, and the exponential expan-

sion within the horn), we start off with a general change of

sound pressure with distance.

p = R(x) pm sin w(t- x/c)

It is possible to substitute various specific functions for the

different propagation regions. For plane waves, neglecting

absorption:

R(x) = I . (2.9)

If absorption is taken into account:

R(x) = e -Cx (2.10)

in general, the absorption coefficient a is a function of fre-

quency, In the development in Section 5, the absorption computed

on the bases of heat conduction and viscosity is used. The re-

sults there presented are valid for dry air. The presence of

water vapor introduces an additional variable leading to higher

absorption especially in the upper frequency region under con-

sideration.

In the region within an exponential horn having a flare

constant m: Sx = S t the sound pressure function becomes:

R(x) = e-mx/2 (2.11)
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In the region of spherical spreading the intensity de-

creases as the inverse square of the distance and the sound

pressure decreases as the inverse first power:

R(x) = ro/x . (2.12)

Both within the horn and where sound radiation diverges

spherically, the intensity reduction due to the increasing area

of the wave front greatly exceeds the internal losses. The

latter are, therefore, of paramount importance only for plane

waves.

The condition for the formation of shock waves is then

expressed mathematically as the rate of change of the pressure

with distance becoming very large

dp/dx--> -• (2.13)

We utilize the relations between particle velocity, sound

velocity, and pressure:

c = co + Uf, (2.8)

p = Upco , (2.6)

dp = pcodU = (pc 0 /P) dc . (2.14)

Furthermore, the propagation of an initially simple har-

monic wave of pressure amplitude pm is

p = pm R(x) sin w (t-x/c) . (2.15)

dp = (i2' dx+ i2\ dc

= (.Pc dx + ( Pix--- dpc (2.16)

Vx~c \Vc/x Pc9



dx pc 0  cx

When

(2~)~ -1,(2.18)

dp/dx 4

and shock waves form.

Now differentiate Eq. (2.15):

('P) = pm R(x) cos [w (t-x/c)](xc/c 2 ) (2.19)

The largest possible value of a cosine function is unity,

so that by substituting Eqs. (2.18) in (2.19) we conclude that

shock conditions begin to appear when

pm R(x) X(-• > i (2.20)

C pC0

The sound velocity is assigned the mean value:

c c 0 (2.21)

For the plane wave condition without attenuation by

Eq. (2.9): R(x) = 1, so that substituting Eq. (2.9) and (2.21)

in Eq. (2.20):

)poC •Po Po 1
x > - = = 6.3 x 10 - [cm] (2.22)

-PM • PM 2vffB Pm f

This is the shock formation distance.

Table 2.1 gives the shock formation distance for plane

wave propagation in terms of frequency in kHz and sound pressure

level 20 logV'-2 Pm/0.0002. The plane wave region a 2X is given

for comparison, for the particular sirens a = I ft.

10



TABLE 2.1

SHOCK FORMATION DISTANCE IN FEET

Frequency, kHz
Sound Pressure Pm

Level, db dynes/cm2 0.1 0.3 1 3 10

171 105 21 7 2.1 0.7 0.21

165 5 x 10 4  42 14 4.2 1.4 0.42

157 2 x 10 4  105 35 10.5 3.5 1.05
151 104 210 70 21 7 2.1

(a = I ft) a 2 /A 0.1 0.3 1 3.3 10

From this table it appears that below 1 kHz the plane
wave generated at the mouth of a 1 ft square source would start

to spread and become a spherical wave before shock waves form.

On the other hand, if horns are redesigned so that they can pro-

duce reasonable pure wave forms at over 3 kHz, shocks may form

in front of the siren.

For the condition of propagation in a horn, Eqs. (2.11)
and (2.18) give:

Pm1Xe-mx/2 f/PCo3 > I

Now the quantity xe-mx/2 has a maximum value 2/me when
x = 2/m. This means either shocks form for x<2/m or they will

never form. (Note: at the point x = 2/m the cross-sectional

area of the horn is e (= 7.36) times the area of the throat.)

The maximum peak pressure in the throat must be
3

pc° me
Pm> 2 (2.23)

ý1 2



Using the concept of the cut off frequency, f , below
which the horn is a very ineffective radiator

fc= mco/47 (2.24)

gives 2 fPoe f

PM 4 -e =- -c
Sf 1 ff (2.25)
c x 3.16 x 106 dynes cm-2

f

Table 2.2 gives the sound pressure level at the throat of
the horn for shock wave production as a function of the ratio of
frequency, f, to the horn cut off frequency, f

TABLE 2.2

SOUND PRESSURE LEVEL AT THE THROAT OF THE HORN

f/f1c 2 5 10 20 50
20 log[W=0- Pm/0.00021 201 198 194 191 188 184 db

For spherical radiation, Eq. (2.12): R(x) = ro /x and
Eq. (2.20) yield for the condition for shock formation:

3
PC0 3 YpoCo

Pm P - o (2.26)
0 0

6.2 x 105 dynes cm- 2  (2.27)
Fr

0

where F is the frequency in kHz and r° the radius of the wave
front where the sound pressure is pm"

It is now necessary to relate the sound pressure level at
some distance r0 where propagation has developed to a spherical
form to the sound pressure, pg, at the mouth of the horn.

12



If losses are neglected, then the total sound power through

a hemisphere of radius r0 is equal to the sound power from the

mouth of the horn.

pgSm

g= 1 (2.28)

"" Pg = pm ro V 2W/Sm

So that conditions for shock waves forming in the region

of spherical spreading becomes

- P°c = (2.29)

Pg °

Substituting for the area of the mouth (I ft 2

S = (30.4)2 cm2  (2.30)-m

Pg > 5.45 x 105/F dynes cm-2

Table 2.3 gives the sound pressure level L in db re
0.0002 dynes cm 2 at the mouth of a horn as a function of fre-

quency in kHz below which no shock formation in the region of

spherical spreading is expected.

TABLE 2.3

SOUND PRESSURE LEVELS AT THE MOUTH OF THE HORN ABOVE WHICH

SHOCK WAVES WILL FORM IN THE REGION OF SPHERICAL SPREADING

F, kHz 0.1 0.2 0.5 1 2 5 10

L db 196 193 189 186 183 179 176

13



Comparison of this table with Table 2.2 shows that shock

formation in the region of spherical spreading will not occur

with sirens of presently available power. Thus, if sirens are

modified to have a higher cut off frequency so that the forma-

tion of shock waves in the horns is avoided, then shock forma-

tion in the short plane wave region immediately in front of the

sirens is the most important consideration. Table 2.3 indicates

that shock formation in the region of spherical spreading need

not be considered. A more precise treatment of shock formation

under conditions of spherical spreading is considered in Sec-

tion 4. The assumption that radiation immediately in front of

the horn approaches plane waves is a reasonably good assumption

for the horns of current design, having a large center core.

If horns with higher cut off frequencies are designed, this

assumption should be reviewed.

2.4 GROWTH OF DISTORTION IN PLANE WAVE PROPAGATION

OF INITIALLY SIMPLE HARMONIC WAVES

The growth of harmonics in plane waves has been computed

taking full account of absorption by Blackstock(I) and by Cook. (2)

The method of computation was different and Blackstock states

that his results were sufficiently close to those of Cook that

he found it not worth while reporting the results. In both

cases digital computer techniques were used. In both cases the

rate of growth of harmonics was computed as a function of the

product of absorption coefficient of the fundamental (Blackstock:

ct; Cook: cao) and the shock formation distance (Cook: L = xc

in Section 2.4, Eq. 2.22 of this report). Blackstock calls the

function a L = F-1 . Blackstock extended computation over the

range 0.2 <F <1i00. Cook showed that, prior to the formation of

a shock the growth of harmonics for ao0L<0.01, (1> 100), (Ref. 2,

Fig. 9.11), the function of the rate of growth of harmonics is

substantially the same as that computed much more simply indepen-
(3) (4)

dently by Fubini-Ghiron , by Keck and Beyer(, and by

Hargrove(5) for the condition ao = 0.

14



Inserting into the expression for axc values to be ex-

pected in the operating range of the facility under consideration

a ,2 / (2.31)

where v' v v [I + rl'/2r9 + ('y-l)/2Pr]

V = kinematic viscosity .2 0.15 for air at 70°F

l'/-q= ratio of dilations to shear viscosity

- 0.8 for air

P = Prandtl number = 0.71

Hence, using Eq. (2.22)

ax 11 0 (2.32)c PmPCo 2

0.251 x 1.4 x 1.01 x 106 x 6.28 f

1.2 x (3.44)2 x 108 PM

= 1.58 x 10-3 f/Pm (2.33)

Now in the problem under consideration f <l104 and pm> 104

(151 db) (for lower sound pressures the nonlinear effects are

small); so that in the range of interest for the facility

Uxc <0.01l<<I. Therefore, in the region prior to the formation

of a shock the attenuation is negligible and the simple expres-

sion for the intensity of harmonics of Fubini-Chiron (3), Keck

and Beyer (4), or Hargrove(5) is accurate to better than about

1 db.

P Pm 1 bn sin w(t-x/co) (2.34a)

n=l

bn= (_l)n+l 2__ Jn(nb) (2.34b)
n6

0 = X/xc (2.34c)

n ) is the Bessel function of order n.
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Beyond the shock formation distance, Blackstock(I)

gives the attenuation, as, of the fundamental as

a = (b + 1)/2 (2.35)

The amplitudes of the harmonics in this region have

not been computed in detail. However, for distances consider-

ably in excess of the shock formation distance, the wave may

be assumed to be a sawtooth.

The Fourier series for a sawtooth wave is:

p Pmx E bsn sin w(t-x/c 0 ) (2.36a)

n=l

bsn = (- 1 )n+l 1/n (2.36b)

Combining these last three equations, Eq. (2.34) for

X/Xc<l, Eq. (2.35) for x/xc>2, and Eq. (2.36) for x/xc>> 1

(x/xc > 5 say), a plot of the amplitudes of the first four har-

monics is obtained and shown in Fig. 2.3.

The solid lines show the region in which formulae are

valid, the dotted lines indicate estimated interpolations.

Some caution is needed in the region x/xc >> 1. Formula

(2.35) applies only in the region ax = 0. For finite attenua-

tion, the results of Blackstock's computer program are needed.

Values are indicated by dashed lines in Fig. 2.3 for various

values of axc for the fundamental only. Again, from Eq. (2.33)

ax is quite small for all cases of interest. The solid lines

in Fig. 2.3 are, therefore, reliable within the limits of the

most sophisticated computations available.

It should be remembered that the theoretical treatments

consider only the classical attenuation. The presence of water

vapor in the air introduces additional absorption. This will

attenuate the distortion products more than predicted by the

classical derivation. This will make axc somewhat larger and

a more complicated function of frequency.
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Waves Due to Finite Amplitude Effects.
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2.5 NOTE ON NOISE

All preceding sections have dealt with initially simple

harmonic pressure fluctuations. It is of interest also to deter-
mine the effects of nonlinearities on nonperiodic functions pro-

duced by amplitude and frequency modulation of a siren output.

The taped program normally employed to modulate the fre-
quency and amplitude of the sirens is designed to simulate the

properties of band limited white noise.

The most significant difference between band limited

noise and simple harmonic motion is the probability distribution

of the instantaneous amplitude. For true white noise or filtered

white noise this is a Gaussian function having a maximum at zero
and approaching zero for very large amplitudes. The exact Gaus-

sian function cannot be achieved either by amplification of ran-

dom generators or by modulating sirens. In both cases there

will always be some finite amplitude above which the probability
amplitude will drop to zero much more rapidly than the error

function. In the case of modulated sirens, this will be the

maximum amplitude the sirens are capable of generating with the

modulating ports wide open.

Similar limitations are in practice imposed on band

limited noise by maximum power handling capabilities of the

amplifiers. The waveforms from the sirens may, therefore, be

essentially similar to the kind of waveforms generated by elec-

tronic means differing from theoretical Gaussian noise in a
minor manner in the region of rarely occurring very large ampli-

tudes. All the probability functions have a maximum value for

zero amplitude decaying along the familiar bell-shaped curve for

large amplitudes.

For sine waves the amplitude probability function is

exactly zero beyond the peak amplitude; moreover this probability

amplitude increases from a minimum at zero amplitude to a

18



cusp-shaped highest value at the peak amplitude. Since non-

linear effects will depend on the amount of time spent at large

amplitudes and the values of this largest amplitude, there are

two opposing factors. For the same root mean square amplitude

the noise function will be of small amplitude a much larger

percentage of the time than the simple harmonic function. On

the other hand considerably higher amplitudes are reached.

It would be an interesting exercise to attempt a compu-

tation on the effect of this different amplitude distribution

for the two types of functions considered. This has not been

done within the time and budget limitations of the current pro-

gram. Instead, an experimental program was set up to measure

the distortion generated by plane-wave band-limited noise sig-

nals. The experimental program is described in Section 9.

The growth of the measured "harmonics" resembles the

growth of harmonics of pure tones of a different root mean

square amplitude as calculated from Eq. (2.34). By means of

a curve fitting technique, it is possible to estimate the dif-

ference between the root mean square pressure of noise and

simple harmonic functions which give rise to the same amount

of signal distortion.

The data indicate that in the region tested the occa-

sional very large amplitudes of the noise signal outweigh their

rarer occurrence and the same distortion is produced at a lower

RMS level of noise than required with pure tones. However, the

data are insufficient to predict this difference for other fre-

quencies, RMS sound pressures, or band widths. Further work

along this line would evidently be desirable.
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3. DISTORTION IN THE HORN

3.1 MODERATE AMPLITUDE--LOW FREQUENCY

The propagation inside the horn of the siren occurs at

much higher intensities than elsewhere and nonlinear effects

manifest themselves much more strongly in this region.

The computations quoted by Olson(6) carried out by

Thuras, Jenkins and O'Neil(7) show that for moderate amplitudes

the relative amplitude of the second harmonic P2 is given in

terms of the sound pressure at the throat Pt by:

P2 ý_- -Y + 1 Pt 1 - e-mx /2 (1
- - -- Pt(3.1)

P1  2 y Po m c

where m is the flare constant of an exponential horn. We sub-

stitute in this equation the relative areas of the mouth, SM)

and the throat, St, of the horn, and replace the flare constant,

m, by the horn cut off frequency, fc = mc/47. Further, let us

express the relative level of the second harmonic L 2 - L 1 =

20 log p 2 /pl at the mouth of the horn in terms of the sound

pressure level, Lt, re 0.0002 Lbar at the throat

Sm = Ste mx0

Lt 20 log pt + 7 4

p0  10 6 dynes cm 2 (I atmosphere)

- 1.4 ; (y+l)/y = 1.72

(L/mc = (j)/2(i) = f/2f
C c

L 2 - L I

= Lt + 20 log x 1.72 x 106 + log (1 ) + log f
4 f

c
= L~ + log f'/c + log (1 -VFTt7~)- 18(32lo i•S/m) - 198 (3.2)

This function is plotted for St //<Sm in Fig. 3.1.
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The derivation assumes that the particle velocity is

small (though not as small as for the very small linear theory).

Experimental confirmation of the theory is presented for moder-

ate amplitudes. (7) The validity may be expected to be reasonably

good up to L 2 - LI -- -15 db.

3.2 LARGER AMPLITUDES--SHOCK WAVES

As the distortion increases, a shock wave forms eventually

and once a sawtooth wave form has been established, this wave

form retains a reasonably constant shape. The Fourier transform

of a sawtooth wave form yields a series of sine functions

(-)n+l sin nabt (3.3)

n= 1

The amplitude of the second harmonic will be one half the

amplitude of the fundamental. On a sound pressure level scale,

the second harmonic will be 6 db below the fundamental. The

levels of the first ten harmonics with respect to the fundamental

are given in Table 3.1.

TABLE 3.1

LEVEL OF HARMONICS IN A SAWTOOTH WAVE

number of harmonic 1 2 3 4 5 6 7 8 9 10

relative level, db 0 -6 -9.5 -12 -14 -16 -17 -18 -19 -20

The interpolation between the level of the second harmonic

for a fully developed sawtooth wave form and the moderate ampli-

tude for which theoretical derivations have been verified is

shown as a dotted line in Fig. 3.1. The solid lines indicate

the levels of second harmonic distortion computed to the extent

to which the theory is valid. The parameter on each line gives the
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value of the fundamental frequency with respect to the cut off

frequency. The maximum value of the peak sound pressure in the

throat of the horn for pure sinusoidal excitation is one atmos-

phere (assuming a one atmosphere mean pressure). The maximum

RMS pressure is, therefore, I/V7 atmosphere. Maximum possible

sinusoidal sound pressure level is, therefore, 20 log (0.713 x 106/

0.0002) = 191 db. Neglecting losses, the intensity at the mouth

is the product of the intensity at the throat and the area ratio:

Pm2 = pt 2 Sm/St *

Expressed in sound pressure level notation

Lm - Ls = 10 log Sm/S t (3.4)

The throat levels shown on the abscissa of Fig. 3.1 may

be converted to sound pressure levels measured at the mouth by

subtracting 10 log (Sm/St). This formula is valid in the region

where distortion is not very severe (second harmonic below about

-15 db). Strong distortion products transfer an appreciable

amount of energy from the fundamental to the harmonics so that

in the regions shown by dotted lines on the curve the correspond-

ing sound pressure level at the mouth will be somewhat lower

than computed from the area ratio relation, Eq. (3.4).

The sound pressure levels at which shock waves form was

given in Table 2.1. It may be noted that these levels intersect

the extrapolated low level distortion curves in Fig. 3.1 at the

level L2 - LI = -6 db. Thus, there is an additional point in

the extrapolation region which lends confidence to the validity

of the extrapolation.

Further study of Fig. 3.1 reveals that if distortion is

to be minimized, horns must be used near their cut off frequency.

Experimentally it has been determined that the distortion in the

present sirens is negligible at 300 Hz at full output, but quite

severe with pronounced shock formation at 1,000 Hz.
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3.3 UTILIZATION OF FACILITY

The nonlinear effects of the propagation of high inten-

sity sound waves may be either reduced by siren redesign or

taken into account by computation and calibration over a wide

range of sound pressure levels.

3.3.1 Facility Modifications

A redesign of some of the horns and operation of each

siren within a more limited frequency range will minimize dis-

tortion. Thus, low frequency horns would be used for generating

low frequencies only. High frequency sounds would be generated

only by the horns specifically designed for that region. The

present location of the stator motors limits the design flexi-

bility in this direction within budget limitations.

At any rate, caution must be exercised in replacing pres-

ent siren horns with horns having a lower cut off in order to

generate intense sounds at lower frequencies. A 50 Hz horn oper-

ating at 250 Hz will generate as much distortion as a 200 Hz horn

operating at 1 kHz. In other words, if some horns are to be re-

placed with horns having an extended low frequency range, this

replacement should be limited to the minimum number necessary.

3.3.2 Compensation for Nonlinear Effects

The present system may be accepted as it is with the

generation of harmonics at moderate and high frequencies. Some

of the sound power generated will be diverted to harmonics. If

this is taken into account, there will be no great loss except

that at the highest power levels, performance cannot be extrapo-

lated from measurements at low levels.
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4. PROPAGATION OF SPHERICAL WAVES

In the infinitesimal sound theory a useful approximation

of a real sound source is frequently the spherical source. This

approximation is suitable when the physical dimensions of the

source are small relative to the wavelength of sound and/or dis-

tances from the source are moderately large relative to wave-

length. The region in which spherical spreading is a good approx-

imation was given in Section 2, last line of Table 2.1. If many

adjacent sirens operate synchronously, the plane wave region ex-

tends proportionately further into the room. Even then spherical

spreading is the predominant propagation mode over most of the

room.

Analytic models approximating sources of this type have

not been incorporated into the problem of propagation of finite

amplitude waves. To do so requires the statement of the funda-

mental differential equations in an appropriate coordinate sys-

tem and the development of an analytic statement of the boundary

conditions appropriate to the sound source and the boundaries

of its environment. This has been done for a piston radiating

plane progressive waves, and, also, to a limited extent, for

spherical sources. These two cases represent, in a sense, limit-

ing cases between which actual sources like the sirens will be

expected to fall. The plane wave case represents that extreme

wherein loss of intensity in the wave occurs only because of

loss to the medium.

4.1 APPLICATION OF THE COMPUTATIONS BY LAIRD AND ACKERMAN

TO THE SONIC FATIGUE FACILITY

One approach to the analytic treatment of the propaga-

tion of spherical waves of finite amplitude is the paper by Laird

and Ackerman.(8) They begin with the usual equations of con-

tinuity, motion, and the adiabatic equation of state for a per-

fect gas in the Eulerian formulation. With the additional assump-

tion of spherical symmetry about the origin, these equations can

be stated as:
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-_e+ U _2+ 0 ýu + 2_ = 0 (4.1)
)t )r 6r r

-- + pU-- + = 0 (4.2)

6t ýr )r

• _ = ( • _ 7( 
4 . 3 )

PO Po

where p = density, p = pressure, and U = particle velocity.

The assumption that the gas is non-viscous, non-heat con-

ducting, and non-heat radiating is a common one in the literature;

and it is generally assumed that the approximation is satisfactory

during that regime in wave propagation before shock waves begin

to form.

After several transformations of coordinates, including

a normalization, Eqs. (4.1) and (4.2) become

2 )S + 2v IS + (I+S) Iv + 2v(l+S) = 0 (4.4)

5-1 0 7-1 Sx )x x

-v + v 6v + 2 (I+S) ýS 0 (4.5)

N) 6w -y-1 Sw

where v, U/co

S =(C-Co)/Co

w = (27/X 0 ) r

0 = 2vft

f = frequency

X = wavelength of sound in the limit of infinitesimal

amplitude

c = T = velocity of sound

co NP 07p/Po = undisturbed speed of sound
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Boundary conditions are specified in terms of particle velocity

at the surface of a pulsating spherical source with equilibrium

radius ro, in the form

Up = U (ro0 + p) = Urm exp j (2vft-6) (4.6)

p =- i U exp j (2vft-6) (4.7)
2wf

where Urm is velocity amplitude of the source and ý is an arbi-

trary phase angle. We note that the boundary conditions do not

give the particle velocity at a fixed radius r0 but at a vari-

able radius r + P where is the displacement of the surface

of the sphere from equilibrium at time, t.

In normalized coordinates, Eqs. (4.6) and (4.7) are

Vp = v (w0 + K P,y) =vm exp j (0-6) (4.8)

KP = -jvm exp j (@-ý) (4.9)

where n = U P/c . Since this formulation gives particle velocity

at time t at a variable radius ro0 + y, it is difficult to apply

the boundary conditions in order to obtain a specific solution.

This is overcome by expanding particle velocity, v,, in a Taylor's

series in terms of particle velocity at radius ro. That is, we

obtain an approximation to what the particle velocity as a func-

tion of time must be at ro to produce the given particle velocity

at r0 + P at the same time.

Laird and Ackerman solve the equations by a perturbation

method out to the second order approximation. The limiting

assumptions made in this procedure include the condition that

the source circumference shall not be significantly smaller than

one wavelength, i.e., w0 >> 1. Since the horn opening to the

sirens is of the order of 1 ft in radius, it seems reasonable to

assume that this condition will be met down to frequencies of

200 Hz (wavelength approximately 5.65 ft). The total solution

out to second order has the form
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v(w,O) = AIl 1 )exp j(O-w) + T0(2) + 2(2)exp j2(O-w) (4.10)2 ip expO(2) (4.10)

S(w,2) = -i [A61 j(Q-w) + 60(2) + 62 j2(O-w)](4.11)
2

where A = v 0
m (wo2+1)1/2

vm = normalized particle velocity amplitude at source

iI(1) i 1 .1 (i I1 j 1 ' 61 = 1

w w2 1
iw0 (2) 1

2w

2 -(2) (B2(2) + F •2
2 ) 0 F21()21

60(2) y+l 1 F 21

8 7w 4

62(2) - [B2 (2)+ F2 0 (2)_ F 2 1 (2) exp(j4w)]•-1 -+-

2w

B =2  - + )(w) - (W + F2 1(2)(wo)exp j4wo
2- jwo 2 WO w 2o

w ix

F 21(2) 2•2 v22 (2) =1 ; (20 v2 (2) dwf2 AX A2

WO2 CO 2

A2  - j exp (j4w) ; 2

w w 2w

T2l [1 + ...]exp (j 4w)
W w

(2 (i i)iyl() )

v2(2 : j4 6- • 1 Ti•(

4 )w 2 6w
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The actual solutions are to be the real part of these complex

quantities. A computer program was used " to obtain numerical

results in a reasonable time.

Expanding the perfect gas law into a Taylor series pro-

vides an analytic expression for pressure, p, in terms of the

solutions for S, the normalized local velocity of sound. Sub-

stituting in the solution for S up to second order gives

. =A Ie j (0-w) + 2[B - (2)+ -J(Ž+l) log e ýio] 1 exp j2(9-2)y- A-• exp j(Ow) e A

PO w 4 w0 Jw

(4.12)

The computer calculation gave v, S, and p as functions of nor-

malized distance, w = (2v/X )r and vm = U /c . The following

tables give the range of these parameters of interest to the

Sonic Fatigue Facility program.

TABLE 4.1

NORMALIZING FACTOR VERSUS FREQUENCY

Xo/2v wo
Frequency (r = Xo/2vw) (r = I ft)ýps00

200 0.908 1.10

500 0.363 2.75

1000 0.182 5.50

2000 0.091 11.00
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TABLE 4.2

NORMALIZED VELOCITY AMPLITUDE VS. SPL

Sound Pressure Level = Um/c
re 0.0002 Rbar m m

114 
10-4

134 
10-3

154 
10-2

174 
10-1

The computer program used the parametric values of

w= 0.2066, wo 1.0, and w° = 5.0; and vm 0.05, v = 0.1,

vm = 0.2, and vm = 0.4. Of these values, wo0  1.0 and w = 5.0

together with vm = 0.05 are of interest for our case.

This conventional perturbation solution fails to converge

at large distances from the source. Therefore, for large values

of w, a perturbation solution was developed based on the charac-

teristic equations associated with the basic system of differen-

tial equations, Eqs. (4.1), (4.2), and (4.3). The procedure is

based on that discussed by Lin.(9) The solution was carried

through the second order, but only the first order solution was

considered in discussing quantitative results. When the ampli-

tude is low enough s+v <<I, this perturbation of characteristic

equations solution can be used to describe the formation of the

shock fronts, their growth and decay. When the amplitude is

high near the source but is appreciably diminished by spherical

divergence before shocks are formed, it is convenient to use

the conventional perturbation solution carried to second or

higher order near the source out to some intermediate distance

where the amplitude is lower and then to use the first order

characteristic perturbation solution for greater distances.
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This was done in the computer program by Laird and Ackerman. In
Figs. 4.1 and 4.2 we have replotted their results for two cases

applicable to the Sonic Fatigue Facility.

In Fig. 4.1, w° = (2/X 0)r was chosen to be 1.0. This
corresponds to a frequency of 180 Hz if ro, the radius of the
source, is taken as I ft. vm = Um /c was selected as 0.1 about
174 db SPL. The plot of sound pressure level versus distance
for the fundamental falls closely upon the curve for pure spheri-

cal spreading, i.e., 6 db per doubled distance. The second har-
monic appears prominently at only 1 ft from the source, but decays

rapidly. The calculation of the value of the normalized distance
at which the shock wave begins to develop, wsh, gives a value

> 103 or approximately 1,000 ft. The expression for Wsh is based
on the characteristic perturbation solution

1i (l+Wo21/

•sh = wo exp v (4.13)
Y+i Vm~o wo

It has been assumed that the source is sufficiently weak so that
the first order perturbation in the characteristics may be used

to describe the whole field and w0 is of the order of magnitude

of 1.

The calculations indicate that for frequencies at the
lower end of the spectrum, spherical divergence would preclude

the formation of shock waves within the Sonic Fatigue Facility
due to propagation in the air of the room. This is true for
even the very highest sound pressure levels contemplated. The

presence of higher harmonics in the sound field at these fre-
quencies would be due to their generation inside the sirens them-

selves. In other words, since spherical divergence character-

izes the sound field at low frequencies, we cannot expect the

generation and growth of the higher harmonics.
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Figure 4.2 displays the results of the computer program

for a choice of wo = 5.0 and vm = 0.05. A choice of wo = 5

corresponds to a frequency of about 1,100 cps if r0 is chosen

as 1 ft. The second harmonic grows to a significant component

of the signal.

4.2 APPLICATION OF RECENT RUSSIAN LITERATURE

TO THE SONIC FATIGUE FACILITY

A more recent treatment of the propagation of finite

amplitude spherical waves is that of Naugol'nykh, Soluyan, and

Khoblov. This paper represents an attempt to include con-
sideration of viscosity and thermal conductivity of the medium.

To do this the Navier-Stokes equation is formulated in the form

)U+U)`+b )2(U (4.14)
p +rU = r r )r2  r2

where b = 4/3 1 + 71' + k 1

Sc v C p]

represents the results of combining the viscosity terms in the

Navier-Stokes equations and the heat terms in the equation of

state taking into account the fact that the process is non-
adiabatic. The total system of equations to be solved is

completed by the equation of continuity and the approximate

equation of state.

-- + U i--E + P -U +2pU -0 (4.15)
)t )r )r r

p P 0 + c 2 (P-Po) + 2 (P-Po) (4.16)
2 c

A series of transformations and approximations leads to

the final differential equation to be solved
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U +U - AUU = 6 2U (4.17)
Sr r )t 6T2

where A = +1 ; = b r
2 3

2c 2 2po 0 c0

For the case of air, values for these constants are:

b • 9.12 x 10- 6 Newton sec

in
2

2
A = 9.90 x 10-6 sec

meters
2

6 = 9.22 x 10-14 Newton sec4

meter2 kgm

Equation (4.17) is solved in the case of large values
of the reciprocal dissipation factor, R, i.e.,

All
S 0 >>l , i.e., 6 = 0 . (4.18)

2w6

In our case

- (9.90 x 10-§)(3.0) • 2.56 x 108 1 I
4wf (9.22) x 10-14 f

where f is frequency. For all frequencies of interest

f< 10,000 Hz, R»> 1, and this solution should apply. In

Eq. (4.17) we can, therefore, drop the term on the right side

of the equality sign. The resulting equation together with

the boundary conditions U = U0 sin (wt-kr 0 ) at the surface of

the pulsating medium r = ro, leads to the solution

wOT =arcsin E AwUoro log er-- E (4.19)
ro

where C- Ur

Ur
00
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This solution describes the propagation of the wave prior to

the formation of the shock wave where dissipative process plays

no substantial role, F>> 1. Except for the second term,

GU 0 r0 loge (r/ro), this solution would be a spherically diverg-

ing sinusoidal wave. The term X = GwU 0r0 loge (r/r 0 ) results

in a progressive steeping of the wave front. At any instant, t,

this factor increases logarithmically with r. If X is less than

I this distortion is modest for X <1, strong when X is compar-

able to 1, and at X> 1, WT becomes multivalued. The condition

that X = I can be used as a criterion to define the point, r,

where the shock wave begins. This leads to

r1 2 1
- exp = exp - (4.20)

r kr (,+I)U° Y+ wovmo

0 2c

which is equivalent to Eq. (4.13) of the earlier theory under

the approximation that w0 is about 1.

As an example: f = 3000 Hz and vm U/co = 0.05,

r° =0.304 m 30.4 cm = 1 ft, rI becomes 2.7 ro, i.e., 2.7

ft. The plane wave shock formation distance at this intensity

(171 db re 0.0002 dynes cm- 2 ) from Table 2.1 would be 0.7 ft.

This shows the extent to which spherical spreading by reducing

intensity also reduces the distortion.*

The two theoretical treatments give essentially the
same results except that Laird (8), expresses his results for

pressure in a form that provides estimates of the pressure

*Naugol'nykh, et al, state that their assumption of negligible
attenuation (R>> 1) is valid only for the region in which dis-
tances are not very large compared with ro. The formula is,
therefore, not valid for low frequencies or moderate ampli-
tude when shock formation distances would become very large.
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levels for each harmonic as a function of radial distance from

the source while Naugol'nykh(I0) presents a much simpler rela-

tionship from which the wave form may be obtained as a function

of distance. Laird's procedure requires, however, a computer

program (already developed and used) to obtain results for a

specific value of the parameters. This is especially true if

we wish information about harmonics higher than the second.
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5. FINITE AMPLITUDE PLANE ACOUSTIC WAVES

The most general differential equations involving wave

propagation in a gaseous medium( 1 1 ) are quite complex mathemat-

ically and at the present time are unsolvable. However, by mak-

ing suitable approximations these differential equations may be

linearized and the resulting simplified equations can be solved

to yield solutions applicable to "small" signal propagation.

With the advent of more powerful acoustic sources, many

of the approximations made in obtaining the "small signal equa-

tions" cannot be used if a useful analysis of the propagation

is to be made. A consequence of this limitation is that the

differential equations of wave propagation become nonlinear.

Two methods of approach have been used in an attempt to solve

the nonlinear problem. The first and most common method( 1 1 ' 1 2 )

is that utilizing perturbation techniques to obtain solutions.

A disadvantage of this method is that it is relatively weak and

is tedious to use in practice. The second method is that of

transforming the equations into a nonlinear equation whose solu-

tion is known. Blackstock( 1 ' 1 4 ) shows how the nonlinear plane

wave equations may be transformed into an equation called Burger's

equation whose solution for initial value problems is known.

The dependent variable ig particle velocity. It is this method

which will be used in this discussion.

An approximate form of the equations of motion in a thermo-

viscous medium is given by Blackstock as:

co 2 Ux - ic°UUt = -1 V [Y + (•-yl)/PrI Utt, = v'Utt, (5.1)
2

where x is distance, t' = t - x/co, t is time, co is small sig-

nal sound speed in the absence of dissipation, v iv kinematic

viscosity, Y = 2 + r1'/rJ is the viscosity number, t and -r' are

the shear and dilational viscosity coefficients respectively,

-y is the ratio of specific heats, and Pr is the Prandtl number.

38



The quantity P is given by 1/2(l+1) for perfect gases. Divid-

ing through by co3 and letting z = t'/A, one obtains the equation

Ux -UUz = CUzz (5.2)

where

A =Pco2

c V
0

2P 2

Using the transformation

U = 2C [low C]z (5.3)

the equation reduces to

Cx = C•zz (5.4)

where it has been assumed that C # 0. Making a further change
of variables x -ý y = xc, one obtains the equation

Cy = zz (5.5)

which has the initial-value-problem solution(15)

=(yZ) - 1 -(2.Lexp X(zEL dp for y> 0 (5.6)

4v f (y) 1 /2  4y

where

O(p)= (o,p) (5.7)

In the case at hand

C(0,p) = exp 1 f_ U(0,m) dm (5.8)
2C

This derivation was included here as the basis for

both Section 6 and Section 7.
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6. SUPERPOSITION OF FINITE AMPLITUDE WAVES

Let us now consider the case where two plane progres-

sive waves which are sinusoidal at the origin are superimposed

throughout space. Thus,

U(om) = UI sin (ciIAm) + U2 sin (w 2 Am + 6); t> 0

(6.1)
U(om) = 0 ; <0

at the initial point of superposition. Evaluating the integral,

Eq. (5.3), we obtain the result that

C(Op) = B exp cos ( -,AP) cos (w2 Ap + 6) (6.2)
2CwlA 2Cw2 A

where

B = exp F-I + U2 cos 6 (6.3)
2ClA 2Cw2 A A

Thus, from Eq. (5.6)

((y,z) E fm exp cos (wolAP) +
r-,y 0 2C I A

cos (W 2 Ap + 6) (z-P)2] dp +

2Cw 2 A 4y

-U -U2j exp [ cos ((uiAp) + cos (w2Ap + 6)_-7yJ, 2C I A 2C 2 A

f-zP)21 dp (6.4)
4y

The second integral will vanish in the steady state, z C.

Making use of the relations( 1 6 )

e-Z Cos E- (_i)n In(Z) En cos nQ

n=0
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1 if n=0
En 2 ifn > n, an integer

In (z) = Modified Bessel Function

we obtain

C(y,z) =f (-1)k EkIk cos (kwlAP

vr7TY0 0 =0 2CwDA1-ZP

x (- ) j 2C cos (AD2AP+26) exp - . dp
1=0 2Cw°2A 4y j

(6.5)

C(y,z) = B k A(kg) cos (kwiAp) cos (,2 2Ap + j6)

vrý7yk=O 2=0 0o

exp z 2)dp (6.6)
(1'4y /

where

A(k,L) = (-) kE 'k (-- I 2'2 (6.7)

Making use of the following relations

Lim cos (-ap) exp -(z-p) 2 dp = v cos (az) exp (_-2 y)
z-->• 00 4y

Lim sin (bp) exp -(z-P) dp = v sin (•z) exp (_12y)
zý Of 4 y

0

Together with various trigonometric relations, we obtain the

value of the integral in Eq. (6.6) for the steady state (zo).
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00 2
Lim cos (kw1iAp) cos ('w22Ap + 61) exp -(z- dp
z--co J0  4y

2= cos (1 +kw,) Az + 16] exp [-(iw2 +kwl)2 A 2y] +
2

cos [(fW2 -kw1 ) Az + 61] exp [-('w2-kl 1 ) 2 A2 y] (6.8)

Thus

t(y,z) E E A(k,1) I (6.9)
Vv k=O I =0

and the particle velocity becomes

U(y,z) = 2C [log C]z (6.10)

where z = t'/A and y = xC

In the expanded form, the equation is

U = 2C 1 (-)k+i+E k EjIk(Ul/2CwIA) I,(U2/2Cw2A)

k=0

(W2+kwl)A exp [-(iw2 +kwl) 2A2y] sin [(2m2+kll)Az+61] +

('w 2 -kwI)A exp [-(a2-kwl) 2 A2 y] sin [(tw 2 -kwl)Az+16]0

loa
E E k+) Ik(Ul/2CwflA)Ij(U/Cw {cos 1w+w~+1

1=0

exp [-(Io 2 ik)2 A 2y] + cos [(fW 2 -kwl)Az]

exp r 2-k1)2A y] (6.11)

For the case of a single source, we let U2 and 6 approach zero.

Noting that
~0 if f#0

Lim I (Um/2CwmA) =

U2- 0 11 ifi =0
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We find that the particle velocity due to a single source can
be given as

U = 2C E (-l) k+l E kIk (UI/2CcI A)kwIA exp (-k 2 W1
2 A2y) •

U 2C

sin (kwiAz) /[ (-l)kEkIk(Ul/2CwIA) exp (-k2 12A2y) "

cos (kw Az)] (6.12)

(It is to be noted that this solution is identical to that given
by Blackstock.) The result in Eq. (6.12) may be simplified by
noting that for large arguments

-(Z) (ez 2T-2-T)(1 4-4k 2 k2. _(4 k 2 -194 -2_ 9) .... .(6.13)kz)( 8z + 2! (8z) /
Blackstock(14) has shown that we need use only the first term
of the asymptotic expansion for Ik(z) when y is large. This
is so because in the product of the exponential term and the
term in Ik(z) in Eq. (6.12) the exponential term dominates the
Ik(z) term when y is large, i.e., this product approaches zero
as y becomes large. The restriction that y be large means that
the solution obtained frrom Eq. (6.12) by using the first term
of the expansion for Ik(z) in Eq. (6.13) will probably not be
valid near the source.

Making the substitution for Ik(z) from Eq. (6.13) into
Eq. (6.12), we obtain

: (-l) k+1(CR)(knlA) exp [-k 2 w 12 A2 y]

U = 2C k=O (6.14)
(-1LR 2 2 2c R exp [-k W1 A y1

k=O
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The quantity

E (-l))k Ek exp (-k 2 W 2 A2 y) cos (kw Z)

k=0

S0 1 Az , exp (-W12A 2y] (6.15)412
where 04 is a theta function. (16) Now

CO n
( = 4 sin 2nU Iql<1 (6.16)
94 (U,q) n-1

We see, therefore, that

U(x,t) = 2C [04 (A) exp (IA2)]

404 (- ), exp (w12A2 0]

[02

= 2C [Q4 (wlAz/2), exp (-u 1 2A 2y)](wlAz/2) cl.A

[04 (uwiAz/2), exp (-w 1
2 A2y)] 2

or simplifying

U(x,t) = 4CI £ exp (- 12A2 yn) sin (nAz)

n=1 - exp (-2w1
2 A2 yn)

=0 sin (ncnlAz)

E ~2 2
ln= sinh (w, A yn)

= 2Cw IA E sin [nwl(t- X/co)]

n=l sinh (w1 A xCn) (6.17)
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7. NORMAL INCIDENCE REFLECTION FROM A HARD WALL

UNDER SPECIAL CONDITIONS (NORMAL INCIDENCE)

An approximate solution to the problem of reflection

from a wall may be obtained if the following assumptions are

made. Let a finite amplitude plane wave source be located at

"a point x = 0. Let a perfectly reflecting wall be located at

"a point x - p, far enough from the source so that the attenua-

tion of the primary wave makes possible the linear superposi-

tion of two waves in this region (as in the small signal case).

Under the above conditions, the totally reflecting wall

may be replaced by an image source satisfying the boundary con-

dition that the sum of the particle velocities due to the primary

source and the image source is zero at the position of the wall

(x = p). From Eq. (6.12) the primary source may be given as

UI = 2C E (-I)k+l EkIk (UI/2Cw1 A) exp [-(kwIA) 2Cx](k1A)

lk=0 2

sin kw1Ac (t-x/co) / ()k Ekik (U1/2ClA)"

exp [-(kolIA) 2 Cx] cos kl (t-x/co) (7.1)

where

y = xC2

0O (t-x/c0 )

For the image source the particle velocity satisfying the

boundary conditions is
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UR =2C Ea (-l)k+l EkIk (UI/2C 1 A) exp [(kwI 1A) 2 (x-2p)C]

(kw A) sin (kl-C°2X t L ( El)kk(U/2ClA)k k( I
exp [(kw A) 2 (x-2p)C] cos ( _ - (7.2)1\ co

The composite field is thus

UTotal = UI + UR (7.3)
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8. AUTOCORRELATION PROPERTIES OF A BAND OF FINITE AMPLITUDE,

PLANE WAVE. WHITE NOISE

The autocorrelation function of a signal may be obtained

from the following Fourier transform, (22)

00 00

R(T) =j S(f) cos 2wfT df =U S(w) cos (wT) dw (8.1)
f0 2v fO

where R(T) is the autocorrelation function and S(f) is the

power spectral density. To an approximation (which is valid

for the sound pressure levels expected in the RTD facility),

the sound power in a plane wave is proportional to the square

of the sound pressure, where pressure is, in turn, proportional

to the particle velocity U. Thus,
oo

R(T)= [Us () 2 cos (cnT) dw (8.2)
2v Io

where z = constant = PoCo

Us = RMS particle velocity spectral density

The RMS velocity spectral density for the initially finite

amplitude plane wave is,

Us= Limit 1 U2 dtJ

n-•o ft

Limit 2CwlA E dt

n - - 0 n=l s inh((1tAxCn

= W 1• CA 00 \ .....'1/2(83

-N sinh2(V(2 A2Cn)) (8.3)

where t is the period 1/f1 .
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For the sinusoidal plane wave the correlation function is

RI(T) = cos (WT) 1(aOl)dw
1J n~l sinh2 (w2 A2 xCn)

22 2
z I E s i h (8.4)

7A n=l( xCn)

where 6(w) is the Dirac Delta Function. The correlation coef-

ficient may be determined to be

R (T) = R (T)/R (0) cos wlT (8.5)
"W 1cu l I

For the case of a finite band of noise C, <C <wC2 ' Eq.

(8.2) becomes

R(T) = z_ J 2C 2 W2 A2 cos r[I s inh20 C2A2xCn dw
2v Fa snh(2 l xn

22W CD 2

zC2A2 C COS CT d (8.6)
sinh2 (CU2 A2 xCn)

This integral can be evaluated in the following manner. Let

I = w 2 (cos Cr)[CsCh2 (W2a)] dw (8.7)
Jsinh2 (W ac) f

where a = A2 xCn. We may now integrate this integral with

respect to the parameter a.

J Ida c 2 Cos (CT) Jcsch2 (W 2a) dadw

-COS (CDT) Ctnh (w2 a) dw (8.8)
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We may now use the expansion

Ctnh(w c2) exp (w2 a) + exp (-cu2_)

exp (c 2_) - exp (-w _2)

1+ e 2w2.a) 1 + 2 exp (-2k02O) (8.9)

(I- e 2 COJ ) k=l

Thus F2
Cos (usr) 1 +2 E exp (-2kw a.)] dw

fco k=1

sin cWT 2 fexp (-2kw2_) cos cuT dcw
T k=I

sin CWT 2 E Q(a,(•,y) (8.10)

T k=I

Making use of the fact that

fexp [-(x 2 + 2bx + C)] dx

1 a aexp aC erf x + - (8.11)
-2 Vaa V-

where the erf term denotes the error function. We see that

Q (o),i) = Re fexp - (2kcu2 a - icMT) dcw

(8.12)
i )i/2 T2 T
= exp Re i erf ki +

2 _ 8kci

Making use of the fact that

2 O - -)m z2m+l

erf(z) 2 (8.13)
Sm= 4 m9 (2m+l)
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and T \1/2
and Wi + - (__ + 2ka2) / eA (8.14)

where 0 = tan- (T/2w). We obtain the results that

12 E (-i)m+l (T2 /8kc + 2kgc 2  +/2(sin )

8ka = m ! (2m + 1)

(8.15)
00

j sinTr 2 ký; exp (-T 2 /8kg-)

001 2 2 m+1/2
m 1) (-1) [(T /8k.) + 2k-a2 sin 0 (8.16)

mn! (2m + 1)

J =-2 E 2 (-l)m+l sin@ exp (-T 28ku)
6a k= m'O [! (2m + 1)

2~8k 2a121SJL

+ (m + 1/2)[2kw2 - (T 2 /8ka 2 )1(

[(T2/8ku) + 2kw) 2 1 (8.17)

We finally obtain for the correlation function
00 00 00

R(T) 2zC2 A2  E E [Imn,k(w2) - Imn,k(wl)I (8.18)

v n=l k=1 m=1

where a = A2 xCn and 0 = arctan T/2w or sin 0 = TW =+T

= /Nrw4•+Tz since 0 is small. From the definition of
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c2 2
A = /c = 1.2/co 2 a 9.04 (r/f). From Eq. (8.22) we obtain
the autocorrelation coefficient defined as

R(T) = R(T)/R(0)

In Ref. 17, it was pointed out that the total sound field within
the Sonic Fatigue Facility when used in the semi-anechoic mode

with a reflecting floor could be predicted in terms of the known

autocorrelation coefficient of the sound signal and the radiative

characteristic of the sound field. For the case of a simple

source radiating into infinite half space over a hard reflecting

surface, the expression giving the RMS pressure at any field

point is

_ - £2 + 2R(T) [P 1 T2 (8.23)

In the far field where 1  =- P2 , it is seen that P depends upon

R(T) and the distance from the source.

For the infinitesimal amplitude case this resulted in a

far field with a characteristic interference pattern. For narrow

bands of noise this pattern in the direction of the normal to

the floor varied from a pressure maximum at floor level with suc-

cessive maximum and minimum pressures as height from the floor

increased. The amplitude of these maxima and minima damp out

toward the ceiling to a level about 3 db down from that at the

floor. Discrete tones produce a similar pattern with the minima,

however, being very close to zero pressure and the maxima 6 db

above the level that would exist at the point for the same source

radiating into free space. The directivity of the source adds

sufficient complexity to require a computer program. If we are

concerned with the near field, we shall again require a computer

program to use Eq. (8.23) to predict the character of the sound

field. It is an assumption that Eq. (8.23) applies equally well

for sound pressure fields where sound pressure levels are above
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140 db re 0.0002 Tbar. If we make this assumption, a computer
program could include Eq. (8.23) and provide analytic predictions
of the sound field in the Sonic Fatigue Facility. Experimental
verification could be accomplished by sampling the sound field
in the vertical direction at several locations in the chamber.
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9. EXPERIMENTAL INVESTIGATION

The RTD siren operation will have the capabilities of

producing discrete frequency or narrow band noise signals. An

understanding of finite amplitude propagation for both is, there-

fore, desirable. In Sections 2-7 we have discussed the case of

discrete frequency signals. In Section 8, broad band noise was

treated analytically. In this section experiments with band

limited noise signals are described.

9.1 REVIEW OF LITERATURE ON INTENSE BROAD BAND NOISE

That portion of the literature of finite amplitude sound

concerned specifically with the propagation of high intensity

acoustic noise signals is quite limited. In our search of the

literature we found two papers by Ackerman( 1 8 ' 1 9 ). The first

is an attempt at a theoretical treatment while the second is a

limited attempt at the experimental verification of the theory.

The frequency band selected for the experimental work, however,

was in the frequency range of 15 kHz to 50 kHz, well above the

frequency range of interest for the RTD Facility. In addition,

overall sound pressure levels were in the range of 110 to 135 db,

while levels as high as 170 db are of interest here. Ackerman's

theory predicts the effects of nonlinearity of the medium at

high sound pressure levels to be the generation of sum and dif-

ference frequencies. Energy is thereby removed from the original

frequency band and spread over larger parts of the spectrum. A

quantitative description was developed for the case of 1/2 octave

bands of plane wave acoustic noise three meters or less from the

generator. At 15,000 Hz this distance, three meters, corresponds

to 130 wavelengths.

The main siren bank at the RTD Facility produces acous-

tic energy of significant amount in the frequency range of

approximately 150 to 2000 Hz. In this frequency range sound

pressure levels as high as 165 db re 0.0002 ibar for a bandwidth
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of 50 Hz have been measured in the near field of the sirens.

For frequencies in the lower part of this range, 150 to 500 Hz
and at levels below 170 db, essentially two regimes are possible,

according to the theory. At sound pressure levels of up to

130 db, infinitesimal solutions are valid, that is, no signi-

ficant finite amplitude effects are expected to occur. At

sound pressure levels above 130 db "sum frequencies" build up
but a shock wave does not form in three meters even at levels

of up to 170 db. In the second frequency range, 500 Hz to

2000 Hz, the upper limit at which infinitesimal theory is still

valid is lowered to about 110 to 120 db SPL. The lower level

occurs at the higher frequency. At sound pressure levels be-

tween these levels and about 155 db "sum frequencies" build up

although no shock wave is possible. Above this level the theory

fails to offer a prediction.

The high frequency sirens can produce significant acous-

tic energy in the frequency range between 500 and 9600 Hz. It

is, therefore, of interest to consider the nonlinear propaga-

tion of acoustic signals up to 9600 Hz as well. For frequen-

cies above 2000 Hz, the same regimes as those from 500 Hz to

2000 Hz also occur. However, the sound pressure level regime

for each successive frequency range is correspondingly lower.

Thus, one is to expect the growth of "sum frequencies" at sound

pressure levels as low-as 105 db. The theory again fails at

levels above 155 db at these frequencies. The theory adds one

further prediction for noise bands at these higher frequencies.
At sound pressure levels of 150 db shock formation cannot occur

because of excessive attenuation of the "sum frequencies" gen-

erated by nonlinearities in the medium. It is to be noted that

the theory offers no prediction at levels above 150 db in the

upper end of this frequency range, about 500 Hz to 10,000 Hz.

The experimental results have been confined to the high

sonic and low ultrasonic frequency range. In this range, the

excessive absorption of the medium for the fundamental and
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whatever "sum frequencies" are generated is the major factor.

As a consequence, shock formation is precluded in the theory

even at very high sound pressure levels up to 170 db. At the

lower sonic frequencies of interest here, significant energy

can be anticipated in the "sum frequencies" and the propagation

of bands of noise at the higher sound pressure levels can be

expected to be significantly different.

9.2 EXPERIMENTAL PROCEDURES

The nonlinearity ot the basic equations applicable to

sound propagation at these sound pressure levels implies that

the simple summation procedures of the linear theory are not

per se applicable. Thus, one cannot say a priori, that integra-

tion of pure tones over the band of interest constitutes a solu-

tion to the problem in the nonlinear case. It is for these

reasons that we have undertaken an experimental investigation

of the propagation of plane waves of acoustic noise.

The major experimental limitation was the generation of

noise signals at the sound pressure levels of interest (up to

170 db) without initially introducing 'a significant level of har-

monic distortion. This limitation required that the sound be

generated with multiple t-ransducers each operating at a low power

level. The low power level per transducer required a large num-

ber of transducers whose sound energy output is converged to a

narrow channel to raise the intensity to the degree required.

For this purpose use was made of the high intensity pro-

gressive sound tube facilities at the Riverbank Acoustical

Laboratory in Geneva, Illinois. These facilities are described

in Ref. 20 and briefly summarized in Appendix B. For this pro-

gram the low frequency and medium frequency impedance tubes were

used.

The low frequency tube used has a usable length of 20 ft

(6.10 meters) and a diameter of 3 in. (7.5 cm). This was terminated
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by a non-reflecting termination consisting of a wedge of acous-
tically absorbing material. The cut off frequency, fc' the

frequency of the first cross mode, for a cylindrical tube of

radius, a, is given by Morse( 2 1 ) as:

f = 0.586 c/2a

For a 3 in. tube the cut off frequency is 2650 Hz. No difficulty

was experienced in propagating bands of noise down the tube at
levels up to 150 db SPL at frequencies as high as 1000 Hz.

The sound source for this tube is a bank of 49 speakers
arranged in a square array of 7 by 7. The speakers were 8 in.

cone loudspeakers, Jensen P8-PC. The arrangement of the speakers,

their power handling capabilities, and efficiency are discussed

in Ref. 20 together with construction and acoustical performance

of the exponential horn coupling the speakers to the tube.

In order to attain higher levels at frequencies from
100 Hz to 2000 Hz we used the medium frequency tube. The de-

tails of this facility are also discussed in Ref. 20. The modi-
fication to this facility made for this experiment included:
(a) adding a pc termination, (b) adding a 3 ft section to the

working length of the tube, and (c) replacing the power ampli-
fier with the Savage 1 kilowatt audio amplifier. With 10 per-

cent band limited noise having center frequencies 1500 Hz and

2000 Hz could be produced at sound pressure levels of 130 db

re 0.0002 [bar.

In each tube the microphone can be moved down the axis
of the tube with its diaphragm normal to this axis. Our pro-
cedure was to excite the drivers with a 10 percent band limited

noise, position the microphone at a known distance from the

cross section where the pc ending began, and to record the

microphone output on a Magnecorder, Model PT6BA magnetic tape

recorder. A calibration signal of a pure sinusoid at a known
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SPL and at the center frequency of the noise band was also
recorded on the tape.

Simultaneously with the recording of the noise signal
at a given station this station was identified on a second
channel. These tapes were made into tape loops, one for each
station at which analysis was to be performed. The loops were
played through the Ampex recorder and the sound pressure level
in a 10 Hz band relative to that of the calibrate signal was
measured using the Quan-Tech Laboratories Model 303 wave analyzer.
This was done in two ways. In the first, each harmonic of the
fundamental on a given tape loop was measured using the meter
reading of the wave analyzer directly. The peak level in the
frequency region around the harmonic was sought and recorded.

In a second approach the tape recorder signal was pre-
sented to the Quan-Tech wave analyzer whose output was presented
to a Bruel and Kjaer Type 2305 level recorder. The level re-
corder was driven synchronously by the Quan-Tech wave analyzer.
Writing speed and paper speed on the level recorder were adjusted
to provide maximum detail compatible with stability and repro-
ducibility. A five second tape loop was completely analyzed
over a frequency range of from 200 and 10,000 Hz in approximately
one hour. When empty reels of tape were played through this
system, the noise level in a 10 Hz band was at least 70 db down
from the peak level of the fundamental at all frequencies above
250 Hz.

It is desirable to have a signal output from the drivers
and the exponential horn as free as possible from harmonic dis-
tortion. To establish how well this requirement had been achieved
we probed the sound field immediately in front of the speaker
bank and for a distance of 42 in. into the horn from the plane
of the speakers. A 10 percent bandwidth of noise with a center
frequency of 250 Hz at a level of 157 db was generated.
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Sound pressures were recorded as a function of distance

from the plane of the speakers along the axis of the horn.

For each of eight microphone positions, the recordings

were made into tape loops and analyzed. The second and

third harmonic distortion, that is, the difference in level

between the first and second and between first and third

harmonic components at each point expressed in db is

plotted as a function of distance in Fig. 9.1. Distortion

products follow a standing wave pattern similar to the

standing wave of the fundamental (not shown).

We assume that strong reflections occur at the

transition from the horn throat to the constant diameter

experimental section. The cross-section is continuous in

this transition region, but the rate of change of section

is discontinuous. Consequently there is an impedance dis-

continuity giving rise to reflections and thereby standing

waves. The variation in amplitude of the fundamental, as

well as that of the second and third harmonic follow the

typical standing wave pattern usually observed. The wave-

length corresponds to the fundamental frequency with only

second order perturbations at the harmonic frequency. More-

over the harmonic distortion appears to predominate at the

pressure maxima. This leads to the supposition that the

harmonics are mainly generated in the concentrator horn

rather than in the transducers or amplifiers. A reduction

of standing wave patterns in the coupling horn might be

achieved by changes in the horn design and would lead to

some slight reduction in the initial distortion in the

measuring section. Such modifications were outside the

scope of the present project and some initial distortion

in the test section had to be accepted.
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Fig. 9.1. Level of Second and Third Harmonic Components
below the Level of the Fundamental as a
Function of Distance from the Speakers in the
Horn Coupling Section. (Band limited noise
bandwidth 10 percent mean frequency 250 Hz
at 157 db re 0.0002 [bar near speakers.)

59



The measurements made to establish the extent of

harmonic distortion introduced by the speakers and by non-

linear propagation effects in the horn were not conclusive.

However, harmonic distortion in the signal at the entrance

to the acoustic tube was sufficiently low so that the growth

of harmonics could be observed and measurements could be

made.

Measurements of harmonic content of the signal in

the tube entrance at the horn transition for a band of noise

with central frequency at 800 Hz and overall SPL of 145 db

showed the second harmonic down 30 db from the fundamental

and the third harmonic down 50 db. Levels of fourth and

higher harmonics were below the noise threshold of available

instrumentation.

The lowest central frequency used for the narrow

band (10 percent bandwidth) noise signals in the study was

300 Hz. Figures 9.2 and 9.3 relate to the measurements

made at this frequency. Figure 9.2 presents spectral analy-

sis of the recordings of the noise signal at a distance of

115 in. from the entrance to the tube. The overall noise

level for Fig. 9.2 was 130 db. For a level of 110 db no

distortion was measurable. In Fig. 9.3 we have presented

the analysis at the entrance to the tube, at the distance

of 115 in. and at a distance of 230 in. The overall sound

pressure level was 160 db.
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At the overall level of 130 db, Fig. 9.2 , energy is
present in the second and third harmonic but their levels are
35 db and 42 db lower than the fundamental. At an overall
level of 160 db (Fig. 9.3), however, there is measurable energy
at even the seventh harmonic, while the lower harmonics, second
and third, have levels within 8 db and 19 db respectively of
the fundamental at a distance of 115 in. from the speakers.
The high level of energy in the second and third harmonics at
the position nearest the opening to the tube from the horn to-
gether with significant energy in the fourth and fifth harmonics
is not understood. Such results were not observed at higher

frequencies at the very highest overall levels. The investiga-
tion of the sound field in the exponential horn at comparable
overall levels, 157 db, and at a frequency of 250 Hz did not
suggest this result. Even this degree of harmonic content, how-
ever, represents only a small distortion of the noise signal.
It cannot be said, for example, that a shock wave is present.

In Fig. 9.4 we have plotted the variation of sound pres-
sure level in all harmonics present versus distance down the
tube from the entrance. The central frequency is 300 Hz and
the overall level is 160 db. At this frequency the working
length of the tube was about 1.6 wavelengths. There appears to
be no significant change in level with distance for this dis-
tance in the first four harmonics. The fifth and sixth harmonics
have increased in level about 2 to 3 db over 1.6 wavelengths.

The appearance and growth to a maximum level of harmonics
in a noise signal is well illustrated in Fig. 9.5. Here the
central frequency was 800 Hz and the overall level for the sig-
nal was 145 db. This was the maximum level attainable in the
tube at this frequency. The wavelength of sound at 800 Hz is
0.43 meters so that the working lengths of the tube correspond
to 13.7 wavelengths. The appearance of successively higher
harmonics and their rapid growth to peak levels as the wave
progresses down the tube is a prominent feature. The levels of
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the second and third harmonics at the entrance to the tube from

the exponential horn are 30 db and 50 db down from the funda-

mental. Therefore, the possible distortion produced in the sig-

nol by the speakers and the horn do not obscure the effects of

nonlinear propagation in the tube. At overall levels of this

order the levels attained by harmonics higher than the third

will not be significant for operation of the Sonic Fatigue

Facility. Within the tube these higher harmonics rise rapidly

initially but over the distance of four to five wavelengths have

already passed their peak. The maximum level attained for the

second harmonic was 16 db below the fundamental and for the

third harmonic was 30 db below the fundamental.

The uniformity of the sound pressure level of the funda-

mental along the length of the tube attests to the quality of

the termination. The standing wave ratio seems to have been

below 3 db. The quarter wavelength peak to valley distance is

approximately 0.1m for 800 Hz, hence the apparent irregularity

of the point shown in Fig. 9.5, some of which come close to

maxima and some are near minima of the small residual standing

wave pattern. This residual standing wave pattern tends to

obscure the growth of harmonics near the far end of the tube.

Indications are strong that the rate of growth of the harmonics

decreases in the manner indicated for pure tones in Fig. 2.3.

Comparison with pure tone assumptions is shown dotted in Fig.

9.5 and discussed together with a similar curve at 1000 Hz in

Section 9.3.

In plane wave propagation the power of harmonics is

less than 2 percent of the total after travelling a distance of

fourteen wavelengths at an initial fundamental sound pressure

level of 145 db at 800 Hz. This two percent reduction in funda-

mental level is not discernible among the residual standing

wave fluctuations.

These results pertain to a signal confined to the

interior of a tube. They, therefore, represent upper bounds for
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the case of the sirens of the Sonic Fatigue Facility where spheri-
cal spreading will decrease intensity within the wave as it propa-
gates out into the room. With spherical spreading propagations
of the wave for a distance of 6 meters would decrease the sound
pressure level in the signal 14 db below its level at 1 meter
from the source. This applies to all harmonics as well. It is
directional, nevertheless, spreading of the wave energy must
occur and the transfer of energy into the higher harmonics must
be less efficient than is true for the acoustic tube.

Figure 9.6 presents comparable results for a band of
noise 10 percent bandwidth and centered at 1000 Hz. Again the
second harmonic has reached a peak at a level 16 db below the
fundamental and the third harmonic has reached a peak at a level
26 db below the fundamental.

At sound pressure levels of 130 db re 0.0002 pbar or
lower for frequencies below 500 Hz and at 110 db or lower for
the frequencies of 800 Hz and 1000 Hz, there was no evidence
of a growth of harmonic content as the noise signal propagated
down the tube. For these frequencies and at these levels the
infinitesimal theory clearly holds. Although a small harmonic
content is present in the signal at the entrance to the tube,
it does not increase at any harmonic. These results are in
agreement for these frequencies with Ackerman's theory. We have
presented a resume of the data for these cases in Table 9.1.
Data for three stations are included (a) near the termination,
(b) near the half way point in the tube, and (c) at the speaker
end of the tube.

At the maximum levels achieved in the tube and the path
length of travel for the signal, no shock wave could be said
to have formed. This is true even for the case of the signal
with central frequency of 300 Hz and overall sound pressure
level of 160 db. There was a significant transfer of energy
into the second and third harmonics at the higher overall sound
pressure levels above 145 db which could be attributed to
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nonlinear effects in propagation of the signal through the tube.

The maximum transfer of energy into these harmonics, however,

brought them to levels no higher than 2 percent for the second

harmonic and 0.1 percent for the third harmonic of the energy

in the fundamental. For the higher harmonics the energy con-

tent at the most is negligible. The harmonic distortion in

the sound output of the sirens will be expected to be much more

significant than the additional transfer of energy into the

higher harmonics attributable to nonlinear propagation in the

volume of the room.

TABLE 9.1

LIMITED GROWTH OF HARMONICS IN 10 PERCENT BAND LIMITED NOISE

FOR RELATIVELY LOW SOUND PRESSURE LEVELS

Distance from db Below Fundamental
Start of

Frequency SPL db Straight Section F-H F-H F-H F-H5 F-H
(Hz) re 0.0002Rbar (inch) 2 3 4 5 6

300 110 0 32 37 39 41 43
120 30 34 36 38 39
236 28 31 35 37 38

300 130 0 37 44 54 58 65
120 36 43 54 58 63
236 37 45 54 58 61

500 110 0 34 45 49
120 34 43 50
236 36 44 50

500 130 0 32 47 60
120 32.5 47.5 58.5
236 29 47 58

800 110 0 35.5 46.5
120 37 49
236 37 51

1000 100 0 43 46 52
120 44 48 54
236 44 48 53
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9.3 COMPARISON OF EXPERIMENTAL RESULTS WITH COMPUTATIONS

It was pointed out in Section 2.6 that distortion effects

may be expected in band limited noise in the same way as in pure

tones, but the distortion may bear a different relationship to

the root mean square amplitude because of differences in the dis-

tribution of peak amplitudes. In Fig. 9.5 the growth of the

second and third harmonic of a pure tone of the same RMS ampli-

tude is indicated and seen to be very close to the amplitude of

the distortion products measured for the noise. Such agreement

might be fortuitous. In Fig. 9.6 the growth of harmonics of a

pure tone 7 db higher in intensity than the noise is shown. The

measured rate of growth is seen to be less than that computed

for the tone. If a lower level tone had been chosen for com-

parison a lower growth rate, but also a lower level of distor-

tion products would have been obtained. It is possible that the

discrepancy may be accounted for in part by the finite initial

distortion.

Further theoretical and experimental investigations

along this line would seem appropriate.
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10. ROOM TREATMENT

It was concluded in Sections 2-9 that effects in the

room at points remote from the siren are relatively small com-

pared with nonlinear effects in the siren horns.

The interactions due to reflections at the floor for

the semi-anechoic mode of operation and due to the reflections

at walls and floor in the semi-reverberant mode may be computed

from the treatment in Section 7. For normal incidence where

long wave trains are superimposed over considerable distances

slight additional distortion and intermodulation is predicted.

However, the shape of the room and the absence of a wall paral-

lel to the plane of the sirens limits normal incidence to an

insignificant portion of the total sound energy. For oblique

incidence the interaction will be only over a limited region,

where incident and reflected sound waves overlap. Moreover,

positive and negative pressure regions overlap alternately so

that the overall effect tends to cancel out. This means that

the nonlinear effects are simply those of direct propagation

from an effective image source. The contribution of reflected

waves to nonlinear distortion and intermodulation is negligible

for practical purposes; because, as previously stated, nonlinear

propagation effects in the spherical propagation region are

small in the frequency and intensity regions under considera-

tion, and also because the first reflections are all near graz-

ing incidence.

Thus, room conditions whether reverberant or anechoic do

not change any of the basic contributions of nonlinear effects.
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11. RECOMMENDATIONS

11.1 FACILITY USE

The harmonic content of the sound should be taken into

account when setting up specific sound spectra in the room.

Direct generation of high frequency components may be reduced

due to the generation of these components by distortion in the

lower frequency component generators.

11.2 MEASUREMENTS AND TESTS

The mathematical treatment predicts the level of the

harmonic components for finite amplitude generators. However,

at the highest amplitudes the extrapolation is somewhat uncer-

tain and direct measurements are recommended. Some of these

measurements have already been undertaken. It is recommended

that these measurements be extended to a more detailed mapping

of the sound pattern of a single siren. The amplitude of both

fundamental and of each harmonic should be measured at a con-

venient distance from the source as a function of the angle be-

tween the microphone direction and the horn axis. Two planes

should be chosen, preferably the horizontal plane and the plane

containing the diagonal of the square horn mouth. If the direc-

tional characteristics of the sirens is found to be very differ-

ent in these two planes so that interpolation is uncertain,

intermediate planes inclined at 22.50, 11.250, and 37.75° should

be chosen to augment the data.

These data will be needed if precise fields are to be

computed in the facility. The directional characteristics of

the sirens may be amenable to computation. In that case a more

limited experimental program can be set up in which these

characteristics are measured at a very limited number of fre-

quencies to check the computations.
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11.3 FACILITY MODIFICATIONS

11.3.1 Low Frequency Horns

Facility modifications have been contemplated to extend
the capability to lower frequencies by modifying some of the
horns to have a lower cut off frequency. This modification

should be limited to the minimum number of horns to be used at
low frequency. At small amplitudes the cut off frequency has

negligible effect on high frequency performance. At large am-
plitudes the distortion is greater if the sound is maintained

at the high intensity for a long time in a longer horn.

11.3.2 High Frequency Horns

Some consideration may also be given to the relative
merits of reducing the high frequency distortion by increasing

the flare in some of the horns. The cut off frequency will
thereby 'be increased, thus adversely affecting the flexibility
of the facility. A compromise must be established taking into

account the expected use of the facility. In other words, if

the distortion is considered unimportant, and a need for high

intensity at low frequency is foreseen, a larger number of low
frequency units would be.desirable, than if maximum output with
low distortion is required at high frequencies.

11.4 FURTHER THEORETICAL ANALYSIS

The importance of the distortion produced in the horn
of the siren (Section 3) was not realized sufficiently early

in the program to devote the time necessary to extend existing

theories to the very large amplitudes involved. Existing

theories were cautiously extrapolated, but the precise computa-

tion of the value of the distortion products requires a more

sophisticated theory. The theory used is essentially a second
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order approximation and is valid for moderate distortion levels.

The theory needs to be taken to a higher order of approximation

to establish the precise level of distortion products. This

knowledge would permit a more exact evaluation of the relative

merits of using horns specifically designed for narrow frequency

regions as discussed under 11.3.

11.5 EXPERIMENTAL STUDIES

11.5.1 Distortion in Siren Horns

The portions of the curves shown dotted in Fig. 3.1 may

also be verified or modified by an experimental study. A simple

series of tests would consist of placing a suitable transducer

close to the mouth of a siren and measuring the amplitude of

each of the harmonics generated (including the fundamental) as

a function of power input to the siren. The experiment would

be repeated for different frequencies over the full range of the

siren capability. A study of this kind is relatively easy to

undertake and is strongly recommended to augment or replace the

theoretical study of Section 11.2.

In addition it would be useful if the directional pat-

terns of the radiation ot the sound from the sirens be deter-

mined experimentally. This will be needed if the sound field

in the facility is to be computed. The question of the radiation

of a sound of a certain frequency may be affected by the pres-

ence of other sounds. Thus the radiation of a 3 kHz component

when generated as a fundamental may be different from the radia-

tion pattern of the sound of this frequency when it is the second

harmonic of 1.5 kHz or the third harmonic of 1 kHz.

11.5.2 Other Nonlinear Effects

An experimental investigation of other effects studied

in this report may also be of interest. This includes the

reflection of simple large amplitude sounds and the interaction
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of sounds of different frequency generating intermodulation
products at the sum and difference frequencies. The study of
the precise level of distortion in horns (Section 11.5.1) should

be given high priority.

11.5.3 Noise

The magnitude of the nonlinear effects on initially
simple harmonic pressure fluctuations is not readily translated

to random signals; Sections 2.5, 8, and 9.3 indicate some of
the difficulties involved. It is suggested that an experimental

program be set up in the high intensity facility in which ampli-
tudes of the fundamental and the first few harmonics be measured
at various distances on the axis of a siren at different levels

of pure tones and narrow band noise. Simultaneous theoretical

development as in Section 8 would also be appropriate.
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12. CONCLUSIONS

The nonlinearities introduced by the medium for finite

amplitude sound waves introduce harmonics into the sound waves

generated by the sirens. This means that in order to generate

a predetermined spectrum in the facility allowance must be

made for this effect. The effect can be reduced by redesigning

some of the horns to have higher cut off frequencies. In any

case if lower cut off frequency horns are to be used on some

of the sirens in order to generate lower frequency sounds, the

changeover should be limited to the number needed for the low

frequency generation. The use of a horn with a low cut off

frequency for high frequency generation will increase the dis-

tortion produced.

Because of the large unavoidable distortion in the siren

horns, the much smaller additional effects in the room may be

neglected.
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APPENDIX A

MEASUREMENTS OF SOUND FIELDS IN THE AFFDL FACILITY

Sound pressure levels were measured in the Facility with

siren #2 only, siren #4 only, and both siren #2 and siren #4

operating together. Waveforms were observed for operating fre-

quencies of 300 Hz and 1000 Hz. At 300 Hz distortion was re-

ported to be low and detailed measurements were not further re-

ported.

For a frequency of 1000 Hz waveforms of the sound were

recorded immediately in front of siren #2 and at several loca-

tions in the room. The locations were chosen in a single plane

normal to the plane of the sirens midway between #2 and #4 at

distances of 6 ft. 2 in., 12 ft. 8.5 in., and 15 ft. 4 in. and

heights of 3 ft. 11 in., 10 ft., 12 ft., 14 ft., and 16 ft. above

the floor.

Spectrum analysis yielded a rather complex picture of

the distortion at various points. This is attributed to the

fact that the radiation pattern of the sirens is rather complex

and the angle of the siren axis and the vector from the mouth

of the siren to the measuring location changes with the measur-

ing location, so that peaks or valleys of the radiation pattern

may be close to different measuring points for the different

harmonics.

The sound pressure level in front of siren #2 was 168 db

and the 2nd, 3rd, and 4th harmonic were 10 db, 14 db, and 15 db

respectively below the fundamental.

The largest distortion in the room was measured at the

12 ft. height above the floor at the 12 ft. 8.5 in. distance

where the fundamental was 150 db and the 2nd, 3rd, and 4th har-

monic were only 5 db, 10 db, and 11 db respectively below the

fundamental; at most other locations the distortion was no greater
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than immediately in front of the horn. It seems reasonable to
explain this behavior by assuming that the harmonics showed

side lobes in their radiation pattern in this direction.

The recorded waveforms are shown in Fig. A-1. Very dis-
tinct triangular shock waves are readily discerned. Some of the
records have been inverted because no attention had been given

to the phase of the microphone connection and the presentation
of the shock with uniform polarity helps distinguish this fea-

ture in the record. The columns of oscillograms show simultaneous

records of six microphones at a distance from the siren bank

shown at the top of the column. The height of the microphone
above the floor is shown in the left margin. The fourth oscillo-
gram is the record of a monitor microphone located in the mouth

of siren #2 for all conditions.
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APPENDIX B

HIGH INTENSITY TEST FACILITY AT RIVERBANK ACOUSTICAL LABORATORIES

Of the three high intensity acoustic tubes( 2 0 ) available

at the Riverbank Acoustical Laboratories, only the low frequency

tube had adequate length to show appreciable nonlinear propaga-

tion effects. Though originally designed for the 20 to 300 Hz

region, operation to 2000 Hz was quite successful.

A drawing of the low frequency impedance tube is shown

in Fig. B-1. This tube was mounted in the center of a plywood

box filled with sand approximately 8.5 by 12 in. in cross sec-

tion in order to damp resonant vibrations of the tube walls.

The horn sections coupling the low frequency tube to the drivers

was also damped by sand. The minimum thickness of sand at all

surfaces of the tubes and horn was 4 in. and over 6000 lbs. of

sand were used.

The length of the low frequency impedance tube was set

by the space available for the tube and its associated horn.

The tube was 20 ft. long, the horn with its coupling section was

16.5 ft. long, and the sample holder was 6 ft. 4 in. long, giv-

ing an overall length of. about 43 ft. In the 20 ft. tube length

two minima in the standing wave pattern could be measured for

frequencies above about 57 cps for any sample impedance. Below

this frequency, measurements were in some cases restricted to

one minimum point and one maximum with some loss in accuracy in-

volved in calculation of the wave length and estimating the

attenuation along the tube. The latter source of error was not

very significant since the attenuation along the tube was small

for the samples of high absorption which were measured.

The sound field inside the impedance tube was explored

by a microphone mounted inside the impedance tube at the end of

a probe tube. A tube was used instead of a rod in order to provide
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a shielded conduit for the microphone cable. The probe tube

passed through a felt lined bushing at the sound-source end of

the impedance tube. The microphone end of the probe tube was

supported by a three legged carriage with felt at the contacts

between the carriage and the inside surface of the impedance

tube. The felt at the microphone carriage supports and at the

bushing provided vibration isolation for the microphone which

is essential for accurate measurements of sound pressure. The

microphones were supported by their electrical connections (thin

wires) to the calibrate resistances and to the signal and cali-

bration cables which were inside the probe tubes. The other end

of the probe tube was clamped to a movable carriage which sup-

ported the microphone preamplifier.

The probe tube was 0.75 in. in diameter and about 23 ft.

long. The preamplifier carriage was moved along a 2 by 5 in.

aluminum channel by means of an endless chain driven by a sprocket.

A steel tape loop attached to the carriage was used to determine

the microphone positions.

The drivers for the low frequency tube consisted of 49

8 in. cone loudspeakers, Jensen P8-PC. The drivers were connected

in a seven by seven array and each line of seven drivers in

series was fused. It was'found that the resonant frequency of

all the speakers was not the same and, for frequencies near 50 cps,

high intensities could not be attained without damage to the cone

supports. Under this condition, a few speakers which were driven

near resonance had excessive amplitudes and the others, off reson-

ance, had much smaller amplitudes. A level of 140 db, however,

could be obtained even in this resonance range.

The speakers were rated at 15 watts for broadcast pro-

gram material. Using a "rule of thumb" conversion factor of

one-half for continuous sinusoidal signal would give a rating

of 7.5 watts per speaker. For the nominal impedance of 8 ohms,

the maximum current rating is 0.96 amp. For the 7 by 7 array
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the maximum input current is then about 7 amps and the maximum

input power is 370 watts. Operation at 6 amps corresponding to

290 watts resulted in a voice coil temperature which caused dis-

coloration of the voice coil forms, but few failures occurred

except as noted for operation near resonance.

A pressure level of 160 db corresponds to an intensity

of about one watt/cm2 assuming that the impedance tube is term-

inated by pc. The 3 in. diameter tube had an area of 45.6 cm2

which gives an acoustic power requirement ot about 45 watts.

The efficiency of the driver and horn system (electrical input

power divided by acoustic power in the impedance tube) was thus

about 45/290 or 16 percent over most of the frequency range.

The speakers were mounted in a 71 by 69 in. plywood

panel one inch thick and were spaced 8.5 in. on center. The

panel was attached to the large end of the exponential horn

which was coupled to the low frequency tube. The horn construc-

tion is described below. The space behind the speakers was a

cavity of rectangular cross section, 68 by 66 by 8 in. This

space was ventilated by means of a small blower. Lined ducts

at the inlet and outlet openings for the cooling air were used

to reduce the sound from the back of the speakers.

The cone loudspeakers were coupled to the low frequency

impedance tube by an inverted exponential horn designed to pro-

vide an approximation to pc loading for the loudspeakers. For

design purposes the layer system was assumed to have high absorp-

tion and thus the impedance tube was terminated by a specific

impedance of about pc and the specific impedance looking into

the source end was also approximately the same. The horn is

considered as a transformer which matches the acoustical imped-

ance of the small area at the impedance tube to the large area

at the loudspeakers. The acoustical impedance is defined as the

specific impedance divided by the area. Thus, a well designed
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horn will transform the acoustical impedance at the throat

pc/S 1 to pc/S 2 at the large end and give a desirable loading

for sound sources at this end.

The horn was designed on the basis of the following

specifications, a 3 in. diameter at the throat, a 59 by 59 in.

area at the large end for mounting 49 8 in. loudspeakers, a

cut-off frequency below 50 cps, and available space and cost

requirements. The equation for an exponential horn of axial

length d is

exp (qd) = 2/SI

The flare constant q determines the cut-off frequency fl which

is defined as

f, = qc/4v

For d equal to 13.6 ft. and S2/SI equal to (59/3)2 or 388, q is

0.44 ft-1 giving a cut-off frequency of 40 cps.

In building the horn it was decided, because of cost, to

use flat plywood one inch thick for the greater part of the sides

with some deviation from an exponential expansion in area. The

length was divided into seven segments. The first was 19 in.

long and was made of 1/4 in. sheet steel which was formed to have

a circular cross section 3 in. in diameter at the impedance tube

end and a square cross section at the other end. The following

segments were made of plywood and were each two feet long. They

were hollow pyramids with a square cross section. At each junc-

tion between segments, the width of the segment was fitted to

the exponential curve specified in the preceding paragraph. The

large end of the horn was closed by a 59 by 59 in. flat plywood

panel on which the 49 loudspeakers were mounted in a seven by

seven array approximately 8.5 in. on center.

The axis of the horn was inclined from the impedance tube

axis as shown in Fig. B-1. The angle between the axes was about
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140. A flanged steel tube, 3 in. I.D. and about 3 ft. long was

bent to connect the impedance tube and horn so that there was

no interference between the microphone probe tube and its pre-

amplifier carriage and the horn.

Although the stepped horn differend from a theoretical

exponential horn in several respects and there was an abrupt

change from the 59 by 59 in. area of the horn to the smaller

area of the 49 loudspeaker cones, the horn did not introduce

pronounced peaks and dips in the frequency response of the sys-

tem. The loading of the loudspeaker drivers was adequate to

give a fairly high efficiency for the conversion of electrical

power to acoustic power in the impedance tube.

All joints between the plywood sides of the horn were

closely fitted and were glued and screwed together. The variouq

segments were mounted in an enclosure filled with sand as des-

cribed previously.

The electronic equipment for the driving system is listed

in Table B-i, analyzing equipment is given in Table B-2.
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TABLE B-I

LIST OF DRIVING EQUIPMENT

Noise Generator

Grason-Stadler Co. Model 455-B

Attenuators

Daven Attenuators

0 - 1 db in 0.1 db steps, Type 2506

0 - 10 db in 1.0 db steps, Type 2511

0 - 100 db in 10.0 db steps, Type 2513

Power Amplifier

Savage I kilowatt audio amplifier

Filter

General Radio--Sound and Vibration Type 1554-E
Analyzer
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TABLE B-2

LIST OF MEASURING EQUIPMENT

Low Frequency Impedance Tube Microphone Systems

Massa M-101 microphone

Massa M-103 preamplifier

Massa M-104 amplifier and power supply

Medium Frequency Impedance Tube Microphone Systems

Massa M-213 microphone

Massa M-114 preamplifier

Massa M-185 amplifier and power supply

Western Electro-Acoustic Lab. Type 100E amplifier

Attenuators

Daven Attenuators

0 - 1 db in 0.1 db steps, Type 2506

0 - 10 db in 1.0 db steps, Type 2511

0 - 100 db in 10.0 db steps, Type 2513

Filters

Allison variable low pass and high pass filters

Analyzer

Quan-Tech Model 303

Voltmeter

Ballantine electronic voltmeter, Model 300
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